

Федеральное государственное бюджетное учреждение науки Институт органической химии им. Н.Д.Зелинского Российской академии наук

«УТВЕРЖДАЮ»

Директор Института

М.П. Егоров *World* 2017 г.

академик РАН

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Приложение к рабочей программе дисциплины «Современная органическая химия»

04.06.01 - Химические науки

(код и наименование направления подготовки)

02.00.03 - Органическая химия

(наименование профиля подготовки)

Паспорт фонда оценочных средств по дисциплине «Современная органическая химия»

№ п/п	Контролируемые дидактические единицы дисциплины*	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
1	Пространственное строение органических соединений. Стереохимия	ОПК-1	Контрольные вопросы для проведения текущего контроля
2	Кислоты и основания в органической химии	ОПК-1	Контрольные вопросы для проведения текущего контроля
3	Изучение механизмов органических реакций. Кинетика химических реакций.	УК-2, ОПК-1	Контрольные вопросы для проведения текущего контроля
4	Электрофильное присоединение по кратной связи и элиминирование.	ПК-3, ПК-4	Контрольные вопросы для проведения текущего контроля
5	Нуклеофильное замещение в ароматическом ряду.	ПК-3, ПК-4	Контрольные вопросы для проведения текущего контроля
6	Основы химии металлорга- нических соединений.	УК-2, ОПК-1, ПК-3, ПК-4	Контрольные вопросы для проведения текущего контроля
7	Присоединение по карбонильной группе.	ОПК-1, ПК-3, ПК-4	Контрольные вопросы для проведения текущего контроля
8	Химия гетероциклических соединений	ОПК-1, ПК-3, ПК-4	Контрольные вопросы для проведения текущего контроля
9	Основы органического синтеза	УК-2, ОПК-1, ПК-4	Контрольные вопросы для проведения текущего контроля

Федеральное государственное бюджетное учреждение науки Институт органической химии им. Н.Д.Зелинского Российской академии наук

Дисциплина «Современная органическая химия»

Контрольные вопросы для проведения текущего контроля:

- 1.Классификация и строение органических соединений. Номенклатура. Конформационный анализ. Физико-химические методы анализа органических соединений.
- 2. Нуклеофильное замещение и реакции элиминирования. Нуклеофильное присоединение по кратным связям.
- 3. Электрофильное присоединение по кратным связям. Электрофильное замещение в ароматических соединениях.
- 4. Радикальные реакции. Реакции окисления и восстановления.
- 5. Металлокомплексный катализ.
- 6. Перициклические и электроциклические реакции.
- 7. Химия гетероцикличекских и природных соединений.
- 8. Ретросинтетический анализ и защитные группы.

Билеты к экзамену по современной органической химии:

- 1. Основные положения структурной теории органических соединений. Электронное строение органических молекул в терминах метода валентных связей и метода молекулярных орбиталей. Строение углеродного скелета. Модель гибридизации АО, σ и π связи. Теория резонанса. Электронные эффекты заместителей. Индуктивный и мезомерный эффекты.
- 2. Нуклеофильное замещение у насыщенного атома углерода. Механизмы нуклеофильного замещения (бимолекулярный и мономолекулярный). Стереохимия реакций замещения, обращение конфигурации и рацемизация. Межфазный катализ в реакциях нуклеофильного замещения.

- 1. Кислотность органических соединений, представления об О-H, N-H, С-H кислотности. Структурные факторы, влияющие на силу кислот и оснований.
- 2. Нуклеофильное замещение у насыщенного атома углерода. Пространственные и электронные эффекты заместителей в субстратах. Уходящие группы, понятие нуклеофильности и нуклеофугности. Анхимерное содействие. Примеры углеродных и гетероатомных электрофилов и нуклеофилов. Амбидентные нуклеофилы, факторы, определяющие региоселективность их реакций. Реакции Арбузова, Финкельштейна, Вильямсона. Проблема переалкилирования аминов, пути её решения.

Билет № 3

- 1. Карбокатионы. Номенклатура. Строение и устойчивость. Типы, способы генерации, примеры реакционной способности. "Неклассические карбокатионы".
- 2. Реакции отщепления. Механизмы E_1 , E_2 и E_{1CB} . Пространственные и электронные эффекты заместителей в субстратах. Влияние свойств основания и условий проведения реакции на скорость и механизм реакции. Регио- и стереохимия реакций отщепления. Правила Зайцева и Гофмана. Условия, необходимые для протекания син-элиминирования. Конкуренция между реакциями элиминирования и нуклеофильного замещения.

Билет № 4

- 1. Кислоты и основания Льюиса. Жесткие и мягкие кислоты и основания. Катализ органических реакций кислотами Льюиса (общий принцип). Поляризуемость ионов и молекул, теория ЖМКО Пирсона
- 2. Реакции электрофильного присоединения к алкенам (реакции Ad_E). Классификация Протонирование: гидратация, присоединение механизмов. галогеноводородов Механизм родственные процессы. реакции: стадийность, π – и о-комплексы. Региоселективность присоединения. Правило Марковникова. Карбокатионные перегруппировки и циклизации. Электрофильное присоединение с последующим отщеплением. Электрофильное алкилирование. Катионная полимеризация алкенов.

- 1. Механизмы органических реакций. Классификация механизмов. Понятие о лимитирующей стадии реакции, конкурирующих процессах, селективности. Кинетический и термодинамический контроль.
- 2. Электрофильное присоединение к алкенам. Стереохимия присоединения галогенов и сульфенгалогенидов, "ониевые" ионы. Галогенирующие реагенты. Равновесие между открытыми и мостиковыми ионами: влияние природы алкена и электрофила. Реакции сопряженного электрофильного присоединения. Эпоксидирование алкенов надкислотами и перекисями.

- 1. Типы механизмов органических реакций. Гетеролитический разрыв связей, общая концепция, примеры реакций гетеролитического разрыва связей С-Х и С-С. Представления о методах определения механизмов
- 2. Электрофильное присоединение к алкенам и алкинам. Гидроборирование: механизм, стереохимия, регио- и хемоселективность. Селективные гидроборирующие реагенты. Превращение алкилборанов в спирты и алкилгалогениды. Особенности реакций протонирования и галогенирования алкинов (сравнение с алкенами). Меркурирование алкенов: механизм реакции и ее синтетическое применение.

Билет № 7

- 1. Применение методов спектроскопии в органической химии: ИК- и УФ-спектроскопия. Основные принципы и применение методов для идентификации органических соединений. Масс-спектрометрический анализ органических соединений.
- 2. Карбонильные соединения. Строение карбонильной группы. Карбонильные соединения и их производные как электрофилы: общая характеристика. Механизмы присоединения по поляризованным С=Х связям. Карбонильная группа как электрофил и как нуклеофил (общий принцип). Электронные и пространственные эффекты. Обратимое присоединение, критерии обратимости. Получение циангидринов.

Билет № 8

- 1. Спектральные методы анализа в органической химии. Физические основы и возможности методов 1 H и 13 C ЯМР спектроскопии в установлении строения органических соединений.
- 2. Карбонильная группа как электрофил. Присоединение к карбонильной группе О-, N- и S- нуклеофилов (кислотный и основной катализ). Получение и разложение ацеталей, тиоацеталей, оснований Шиффа. Восстановление по Кижнеру Вольфу. Перегруппировка Бекмана. Окисление по Байеру Виллигеру.

- 1. Нуклеофильное замещение у насыщенного атома углерода. Соотношение понятий «нуклеофильность» и «основность». Факторы, определяющие реакционную способность нуклеофильного реагента. Методы образования связей С-Hal, C-N, C-S, C-P в реакциях нуклеофильного замещения.
- 2. Реакции нуклеофильного замещения у карбонильной группы производных карбоновых кислот. Производные карбоновых кислот: механизмы присоединения-отщепления по поляризованным группам общего строения Y-C=X. Реакции этерификации (различные механизмы) и переэтерификации, ацилирование О-, N-, S-нуклеофилов (кислотный, основный и нуклеофильный катализ). Диазометан как нуклеофил (реакция Арндта –

Эйстерта). Перегруппировка Курциуса и родственные реакции (перегруппировки Гофмана и Шмидта).

Билет № 10

- 1. Электрофилы: основные представления и примеры. Соотношение понятий электрофильности и кислотности. Факторы, определяющие реакционную способность электрофильного реагента. Методы образования связей C-Hal, C-O, C-S в реакциях электрофильного присоединения.
- 2. Карбонильная группа как электрофил. Присоединение металлоорганических реагентов (RLi, RMgX и т. п.) к карбонильным соединениям: механизм. Присоединение к сложным эфирам и амидам: хемоселективность. Амиды Вайнреба. Применение церийорганических производных. Ацетиленид-ион как нуклеофил (реакция Фаворского Реппе).

Билет № 11

- 1. Кинетика химических реакций. Скорость реакции как функция нуклеофильности и электрофильности субстратов. Шкала Майра. Структурные факторы, влияющие на нуклеофильность и электрофильность.
- 2. Карбонильная группа как электрофил. Обращение полярности по Кори-Зеебаху. Бензоиновая конденсация. Восстановление карбонильных соединений комплексными гидридами металлов до спиртов и аминов. Пространственные эффекты гидридных восстановителей. Восстановление по Меервейну Пондорфу —Верлею. Реакция Канниццаро.

Билет № 12

- 1. Карбанионные реагенты. Перечислите различные типы карбанионных реагентов, способы их генерации и обсудите примеры реакционной способности.
- 2. Карбонильная группа как электрофил в реакциях с карбанионными реагентами. Нитроалканы в реакциях конденсации (реакция Анри). Взаимодействие карбонильных соединений с илидами серы (реакция Кори Чайковского) и фосфора. Механизм реакций Виттига и Хорнера Уодсворта Эммонса. Стереоселективность образования С=С связи в реакциях Виттига и Хорнера. Другие способы олефинирования (реакции Петерсена и Джулиа).

- 1. Стереохимия органических соединений. Понятие о конформациях и конфигурациях органических соединений. Способы изображения молекул (проекции Ньюмена, Фишера).
- 2. Кето-енольная таутомерия. Влияние структурных факторов и растворителя на положение кето-енольного равновесия. Смещение кето-енольного равновесия под действием кислот и оснований. Реакции изотопного обмена и рацемизации при α -

карбонильном атоме углерода. Нитрозирование, сульфенилирование и галогенирование кетонов (получение 1,2-дикетонов и α , β -ненасыщенных кетонов). Перегруппировка Фаворского. Галоформная реакция.

Билет № 14

- 1. Стереохимия карбоциклов. Особенности геометрии малых циклов. Угловые и торсионные напряжения. Конформации циклических соединений. Стереоизомерия в каркасных структурах. Экваториальные и аксиальные связи. Пространственная изомерия замещенных циклогексанов. Цис-/транс-сочленение циклов и цис-/транс-изомерия. Аномерный эффект. Стереохимия нуклеофильного замещения и нуклеофильного присоединения для карбоциклов.
- 2. Енолят-анионы: методы генерирования, регио- и стереоселетивность генерации енолятов. Енолят-ионы амбидентные нуклеофилы. Факторы, определяющие О/С-региоселективность в реакциях енолятов с различными электрофильными реагентами. Силилирование енолятов.

Билет № 15

- 1. Ароматичность: общие представления. Правило Хюккеля. Диаграммы Фроста. Описание бензола в терминах ММО. Ароматичность заряженных частиц и гетероциклов. ЯМР как метод оценки ароматичности. Антиароматичность. Структурные особенности пиклических полиенов.
- 2. Альдольная реакция: механизмы, кислотный и основный катализ, хемоселективность для разных пар карбонильных соединений. Кротоновая конденсация, условия проведения. Сложноэфирная конденсация Кляйзена, циклизация Дикмана. Конденсация кетонов со сложными эфирами как метод синтеза 1,3-дикетонов. Перекрестная конденсация сложных эфиров с эфирами муравьиной, угольной и щавелевой кислот, с эфирами ароматических кислот.

Билет № 16

- 1. Методы создания С-С связей в реакциях нуклеофильного присоединения. Примеры различных типов реакций.
- 2. Направленная альдольная реакция: использование в качестве метиленовой компоненты енолятов β-дикарбонильных соединений (с последующим декарбоксилированием или дезацилированием) и их аналогов. Реакция Кневенагеля. Эфиры α-галогензамещенных кислот как метиленовая компонента (реакция Дарзана).

Билет № 17

1. Методы создания С-С связей в реакциях электрофильного присоединения и замещения. Примеры различных типов реакций.

2. Электрофильные реакции аренов. Механизм электрофильного замещения. Устойчивость σ- комплексов. Влияние заместителей в ароматическом кольце на реакционную способность, хемо- и региоселективность. Типы электрофилов. Бромирование, нитрование, сульфирование. Алкилирование по Фриделю-Крафтсу.

Билет № 18

- 1. Хиральность. Энантиомеры и диастереомеры. Виды хиральности. Абсолютная и относительная конфигурации. Рацематы. Оптическая активность. Мезо-формы. R/S-номенклатура. E/Z- и цис-/транс-номенклатура.
- 2. Сопряженное нуклеофильное присоединение (реакция Михаэля). Общий механизм, сравнение 1,2- и 1,4-присоединения. Типы электрофилов. Присоединение гетероатомных нуклеофилов по Михаэлю, кислотный и основный катализ. Эффект среды. Бромирование и эпоксидирование α,β-ненасыщенных карбонильных соединений.

Билет № 19

- 1. Методы восстановления органических соединений (обзор). Реакции гетерогенного гидрирования. Восстановление атомарным водородом. Ионное гидрирование. Реакция Клеменсена.
- 2. Реакции сопряженного нуклеофильного присоединения (реакция Михаэля). Реакции 1,2- и 1,4- присоединения литийорганических соединений, реактивов Гриньяра, купратных реагентов, цианид-иона. Сопряженное присоединение енолят-ионов. Представление об анионной полимеризации алкенов.

Билет № 20

- 1. Нуклеофильное замещение в ароматическом кольце. Механизм присоединения-отщепления (S_N Ar), сравнение с реакциями нуклеофильного замещения при алифатическом атоме углерода. Анионные σ -комплексы Мейзенгеймера. Нуклеофилы, вступающие в реакцию S_N Ar. Уходящие группы в реакциях S_N Ar, порядок их реакционной способности. Активирующее влияние электроноакцепторных заместителей. Представление о викариозном нуклеофильном замещении атома водорода, кинетический контроль. Реакция Чичибабина.
- 2. Методы синтеза алканов.

Билет № 21

1. Нуклеофильное замещение в ароматическом кольце. Механизм отщепления присоединения. Влияние заместителей на региоизбирательность замещения. Типы нуклеофилов и субстратов, способные реагировать по механизму отщепления присоединения, относительная реакционная способность разных субстратов. Методы генерирования и фиксации дегидробензола.

2. Методы синтеза алкенов.

Билет № 22

- 1. Радикальные реакции. Гомолитический разрыв связей, примеры инициаторов. Радикальное замещение с разрывом С-Н связи (галогенирование, сульфогалогенирование, окисление кислородом). Региоизбирательность, границы применения синтетических методов. Радикальное сдваивание ацетиленов (реакция Глазера). Радикальное аллильное галогенирование.
- 2. Методы синтеза алкинов.

Билет № 23

- 1. Радикальные реакции. Радикальное присоединение по кратным связям. Электрофильные и нуклеофильные радикалы. Присоединение С-радикалов, присоединение бромоводорода по Карашу. Примеры каталитических циклов, хемо- и региоселективность. Радикальное присоединение фосфинов и тиолов к алкенам.
- 2. Методы синтеза алкадиенов.

Билет № 24

- 1. Радикальное восстановление кратных связей. Одноэлектронный перенос, образование анион-радикалов. Ацилоиновая конденсация. Реакция Бёрча, её хемо- и региоселективность. Восстановление по Буво-Блану. Представление о реакциях, инициируемых йодидом самария.
- 2. Методы синтеза циклоалканов.

Билет № 25

1. Перициклические реакции. [3.3]-Сигматропные перегруппировки, общие представления.

Перегруппировки Кляйзена и Коупа. Типы субстратов, стереоспецифичность реакций, критерии обратимости, термодинамический и кинетический контроль. Синтетические примеры.

Представление о анионных перегруппировках (окси-перегруппировка Коупа и т. п.).

2. Методы синтеза спиртов.

- 1. Электроциклические реакции. Реакция Назарова. Типы субстратов и способы их получения, механизм, регио- и стереоспецифичность. Синтетические примеры.
- 2. Методы синтеза диолов.

Билет № 27

- 1. [2+2]- циклоприсоединение: орбитальные требования, типы субстратов, типы инициирования. Межмолекулярный и внутримолекулярный варианты. Регио- и стереоспецифичность. Синтетические примеры.
- 2. Методы синтеза фенолов.

Билет № 28

- 1. [3 +2] циклоприсоединение): диполи и диполярофилы (типы субстратов), механизм взаимодействия. Межмолекулярный и внутримолекулярный варианты. Регио- и стереоспецифичность. Click-реакция Шарплесса.
- 2. Методы синтеза простых эфиров и эпоксидов.

Билет № 29

- 1. Перициклические реакции. Общие представления. [4+2]-Циклоприсоединение (реакция Дильса-Альдера). Типы субстратов, хемо-, регио- и стереоспецифичность. Эндо-правило, его обоснование.
- 2. Методы синтеза карбоновых кислот.

Билет № 30

- 1. Электрофильное ароматическое замещение. Общее представление о механизме реакции: π- и σ-комплексы, аренониевые ионы в реакциях ароматического электрофильного замещения. Влияние заместителя на скорость и направление реакции, орто-/мета-/пара-селективность. Относительная нуклеофильность аренов. Согласованная и несогласованная ориентация. Изотопный обмен водорода. Галогенирование, сульфирование и сульфогалогенирование. Нитрование бензола и его производных, нитрующие агенты. Представление о способах получения полинитросоединений. Нитрозирование, азосочетание.
- 2. Методы синтеза альдегидов и кетонов.

- 1. . Реакции электрофильного ароматического замещения (S_EAr). Алкилирование аренов по Фриделю-Крафтсу. Алкилирующие агенты (спирты, алкены, алкилгалогениды). Механизм и селективность реакции. Побочные процессы: изомеризация алкилирующего реагента и продукта реакции, полиалкилирование и дезалкилирование. Синтез диарил- и триарилметанов. Ацилирование ароматических углеводородов по Фриделю-Крафтсу: ацилирующие реагенты, механизм и селективность реакции. Формилирование ароматических углеводородов по Гаттерману, Вильсмайеру-Хааку и др. Особенности этих реакций, сфера их применимости.
- 2. Методы синтеза аминов и диазосоединений.

- 1.. Медьорганические соединения, способы получения. Присоединение органических купратов по кратным связям: присоединение к алкинам (реакция Нормана) и акцепторным алкенам (присоединение карбанионных реагентов по Михаэлю). Механизм, регио- и стереоизбирательность. Аллильное замещение под действием купратов.
- 2. Методы синтеза нитросоединений.

Билет № 33

- 1. Металлокомплексный катализ: каталитическое гидрирование кратных связей на гомогенных катализаторах. Восстановление алкенов и карбонильных соединений (примеры каталитических циклов). Представление о асимметрическом гидрировании
- 2. Методы синтеза ангидридов и галогенангидридов карбоновых кислот.

Билет № 34

- 1. Металлокомплексный катализ: метатезис олефинов, кросс-метатезис олефинов (требования к субстратам, синтетические примеры). Катализаторы Граббса, каталитический цикл. Реакционная способность замещённых двойных связей. Реакции раскрытия и замыкания циклов. Применение реакции для макроциклизации. Алкеналкиновый метатезис. Межмолекулярный и внутримолекулярный варианты. Субстраты, катализаторы, каталитический цикл
- 2. Методы синтеза непредельных карбонильных соединений.

Билет № 35

- 1. Методы окисления органических соединений (обзор). Окисление спиртов: реагент Джонса и другие производные хрома (VI). Селективное окисление аллиловых спиртов. Окисление по Сверну. Реакции гидроксилирования. Периодатное расщепление диолов.
- 2. Методы синтеза сложных эфиров.

Билет № 36

- 1. Металлокомплексный катализ: титанорганические производные. Реакция Кулинковича: субстраты, реагенты, каталитический цикл. Представление о процессе Циглера-Натта (общий принцип). Олефинирование по Теббе.
- 2. Методы синтеза амидов и нитрилов.

Билет № 37

1. Металлокомплексный катализ: реакции кросс-сочетания винил- и арилгалогенидов с медьорганическими производными. Реакция Соногаширы. Типы субстратов. Стадии каталитического цикла, синтетические примеры.

2. Защитные группы. Общий принцип использования. Защитные группы для карбонильных соединений. Критерии выбора. Методы постановки и снятия.

Билет № 38

- 1. Металлокомплексный катализ: реакции кросс-сочетания винил- и арилгалогенидов. Реакции Хека и Стилле. Синтетические примеры.
- 2. Защитные группы. Общий принцип использования. Классические защитные группы для аминов. Критерии выбора. Методы постановки и снятия.

Билет № 39

- 1. Металлокомплексный катализ: реакции кросс-сочетания винил- и арилгалогенидов с борорганическими производными (реакция Сузуки). Способы синтеза субстратов Синтетические примеры.
- 2. Защитные группы. Общий принцип использования. Классические защитные группы для спиртов. Критерии выбора. Методы постановки и снятия.

- 1. Литий- и магнийорганические соединения: способы получения (восстановление галогенидов металлами, переметаллирование, обмен галогена на металл), реакционная способность по отношению к кислотам и электрофилам.
- 2. Методы синтеза 1,3-дикарбонильных соединений.

1. Индикаторы освоения дисциплины (показатели и критерии оценки уровней сформированности компетенций и шкалы оценивания в

соответствии с задачами контроля)

	соответствии с задачами контроля)									
e e		ВИ	Показатели уровня сформированности компетенций			Средства				
И	5	ан	знания, практические умения, опыт деятельности, которые			оценки,				
II	100	ПВ	должен получить и у	определяющие						
Компетенция или ее компонент	в на					уровень				
THE OH	КО!	1 0				сформирован-				
eTe SOM	1	иd	Минимальный			ности компе-				
M X	B	теј		Базовый уровень	Высокий уровень	тенции или ее				
Ko		ф	уровень			компонента				
		Ā								
			Способен	Способен собирать,	Способен анали-	Контрольные				
			идентифицировать	обрабатывать и	зировать, верифи-	работы, доклады				
			данные,	интерпретировать с	цировать, оценивать	по теме				
			необходимые для	использованием	полноту информа-	дисциплины				
		ĬЙ	анализа и проведения	современных	ции в ходе профес-	и/или научного				
		Когнитивный	химического	информационных	сиональной деятель-	исследования				
			эксперимента,	технологий данные,	ности, при необхо-					
		LHI	используя различные	необходимые для	димости восполнять					
		Ko	источники	формирования	и синтезировать					
	Ą		информации	суждений по	недостающую					
	100			соответствующим	информацию и					
	ПТР			разделам научного	работать в условиях					
	К01			исследования	неопределенности					
	ый		Способен выполнять	Способен описывать	Способен решать	Контрольные				
	4H	ый	ранее описанные	проблемы и ситуации	проблемы,	работы, доклады				
		CTH	действия в своей	профессиональной	поставленные перед	по теме				
	3K)	ЮН.	области исследований	деятельности,	ним в результате	дисциплины				
	Промежуточный контроль	Деятельностный		используя язык и	экспериментальной	и/или научного				
				аппарат основ	деятельности	исследования				
				химического науки		иселедования				
			Способен выполнять	Способен понять и	Способен	Контрольные				
		Й	распоряжения	спланировать	руководить	работы, доклады				
		[HI]	научного	химический	коллективом	по теме				
		ТОН	руководителя по	эксперимент, получив	исследователей в					
		аці	своей области	положительный	своей области науки	дисциплины				
		LIMB	исследований	результат		и/или научного				
		Мотивационный				исследования				

Разработано на основе учебного плана по направлению 04.06.01 – Химические науки, профиль 02.00.03 – Органическая химия, утвержденного Ученым советом ИОХ РАН 13 июля 2017 г.